
uiuc-logo.pdf

Loo.py

Part 6: Loopy

Andreas Klöckner

Computer Science · University of Illinois at Urbana-Champaign

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Outline

1 Loop Generation
Loo.py

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Outline

1 Loop Generation
Loo.py

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Automating GPU Programming

High-performance programming can be a time-consuming
trial-and-error process.

Obvious idea: Let the computer do it. How?

One way: “Smart” compiler, “dumb” developer

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: “Smart” developer, “dumb” compiler

Error-prone
Expensive in developer time
User can use manual/automatic tuning

So compromise! Following: an idea of a compromise.

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Automating GPU Programming

High-performance programming can be a time-consuming
trial-and-error process.

Obvious idea: Let the computer do it. How?

One way: “Smart” compiler, “dumb” developer

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: “Smart” developer, “dumb” compiler

Error-prone
Expensive in developer time
User can use manual/automatic tuning

So compromise! Following: an idea of a compromise.

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Setting the Stage

Idea: Create IR + library of
transformations

Start with math-y statement of
the operation

“Push a few buttons” to
optimize for the target device

Strongly separate these two
parts

Philosophy:

Avoid “intelligence”

User can assume partial
responsibility for correctness

Embedding in Python provides
generation/transform flexibility

Loopy is infrastructure.

Auto-tuners and domain-specific libraries are
“above” loopy conceptually.

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Setting the Stage

Idea: Create IR + library of
transformations

Start with math-y statement of
the operation

“Push a few buttons” to
optimize for the target device

Strongly separate these two
parts

Philosophy:

Avoid “intelligence”

User can assume partial
responsibility for correctness

Embedding in Python provides
generation/transform flexibility

Loopy is infrastructure.

Auto-tuners and domain-specific libraries are
“above” loopy conceptually.

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

DEMO TIME

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Capturing Variants

knl = ...

def variant cpu (knl):
knl = lp. split dimension (knl , ”i”, 16∗4096, outer tag=”g.0”, slabs=(0, 1))
knl = lp. split dimension (knl , ” i inner ”, 16,

inner tag=”unr”)
return knl

def variant gpu (knl):
knl = lp. split dimension (knl , ”i”, 4∗256, outer tag=”g.0”, slabs=(0, 1))
knl = lp. split dimension (knl , ” i inner ”, block size ,

outer tag=”unr”, inner tag=”l.0”)
return knl

for variant in [variant cpu , variant gpu]:
kernel gen = lp. generate loop schedules (variant (knl))
...

Easy to non-redundantly capture
multiple variants of the same
kernel.

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Capturing Variants

knl = ...

def variant cpu (knl):
knl = lp. split dimension (knl , ”i”, 16∗4096, outer tag=”g.0”, slabs=(0, 1))
knl = lp. split dimension (knl , ” i inner ”, 16,

inner tag=”unr”)
return knl

def variant gpu (knl):
knl = lp. split dimension (knl , ”i”, 4∗256, outer tag=”g.0”, slabs=(0, 1))
knl = lp. split dimension (knl , ” i inner ”, block size ,

outer tag=”unr”, inner tag=”l.0”)
return knl

for variant in [variant cpu , variant gpu]:
kernel gen = lp. generate loop schedules (variant (knl))
...

Easy to non-redundantly capture
multiple variants of the same
kernel.

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Ordering

Completely unordered by default

Program only well-formed
if domain traversal order does not matter

Depdencies
can dictate execution order
within largest set of shared loops

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Loo.py vs reality

Two modes of operation:

Standalone
In-process

Flat data structure:

Easy to manipulate
Kernel fusion

Register-your-own:

Functions
Symbols
Reductions

Literal code ‘escape hatch’

Predicated execution

Tree-of-domains for data-dependent control flow

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

Bonus Features

Free extras:

A-priori bounds checking

Generate a sequential version of the code

Automatic Benchmarking

Free tuning advice

Local memory layout
Suboptimal use of hw parallelism
Based on knowledge about target
hardware

Automatic Testing

. . . against sequential version

. . . which is easier to verify

Andreas Klöckner Part 6: Loopy

uiuc-logo.pdf

Loo.py Loo.py

DEMO TIME

Andreas Klöckner Part 6: Loopy

	Loop Generation
	Loo.py

