Domain-Specific Languages to High
Performance: Code Generation and
Transformation in Python
Part 1: Introduction

Andreas Klockner

Computer Science
University of lllinois at Urbana-Champaign



Outline



High Performance: What?

what is... High Performance Computing?

The science of making code actually fast.



High Performance: What?

what is... High Performance Computing?
The science of making code actualyfast:



High Performance: What?

what is... High Performance Computing?
The science of making code actualyfast:

achieve the best performance possible on a given machine.



High Performance: What?

what is... High Performance Computing?
The science of making code actualyfast:

achieve the best performance possible on a given machine.

m NO: | made my code 300,000x faster.

m YES: My code achieves 37% of the achievable floating point
capability of my machine.



High Performance: What?

what is... High Performance Computing?

The science of making code actualyfast:
achieve the best performance possible on a given machine.

m NO: | made my code 300,000x faster.
m YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure — Understand — Improve — Measure —
Understand — Improve — - - -



High-performance code is challenging;:

m designed to push machines, models, and methods to the limits
of their capabilities

m often repurposed — high demands on flexibility



Recipe: Split ‘math work’ from ‘performance work’

m Build Mathematically-oriented mini-languages (‘DSLs")
m Apply domain-specific optimizations and transformations
m Leverage tools to generate GPU/multi-core code from DSL

m Create glue that ties components together



Recipe: Split ‘math work’ from ‘performance work’

m Build Mathematically-oriented mini-languages (‘DSLs")
m Apply domain-specific optimizations and transformations
m Leverage tools to generate GPU/multi-core code from DSL

m Create glue that ties components together

Necessary consequence:
The computation itself is now data that we
will manipulate programmatically.




m Introduction = Case studies

m |Python .
® numpy: broadcasting

= Python E numpy: einsum

" numpy = UFL

m Building languages
m Syntax trees
m Expression languages
m Operations on expression

m Generating C
m Using templating engines
m Types and hybrid code
m Structured code

trees !
m A first glimpse of code generat|ot1 (AS_TS)
generation m Code generation via Loopy
m OpenCL as a vehicle for m Loop polyhedra
code generation m Instructions and ordering
m Execution model m Loop transformation, and
m OpenCL + Python data layout _
m High-performance m Generating instructions
from DSLs

primitives



m Introduction = Case studies

|
]
: E numpy: einsum
|
m Building languages .
m Syntax trees
m Expression languages "
m Operations on expression "
trees "
m A first glimpse of code ) ]
generation m Code generation via Loopy
m OpenCL as a vehicle for = Loop polyhedra
code generation m Instructions and ordering
m Execution model "
m OpenCL + Python . .
m Generating instructions

=
from DSLs



Outline

Software Overview



Getting the software

Core packages:
m Python: https://www.python.org
® numpy: https://www.numpy.org
m pymbolic: https://github.com/inducer/pymbolic
m PyOpenCL: https://github.com/pyopencl/pyopencl
m loopy: https://github.com/inducer/loopy
All open-source under MIT/BSD licenses.


https://www.python.org
https://www.numpy.org
https://github.com/inducer/pymbolic
https://github.com/pyopencl/pyopencl
https://github.com/inducer/loopy

DEMO TIME



	Outline
	Software Overview

