Part 3: OpenCL

Andreas Klockner

Computer Science
University of lllinois at Urbana-Champaign



OpenCL



What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and

other processors. [OpenCL 1.1 spec]
= Device-neutral (Nv GPU, AMD GPU, SEE
Intel/AMD CPU) S ‘
[ ]

m Vendor-neutral
m Comes with RTCG

Defines:

m Host-side programming interface (library)

m Device-side programming language (!)




« Diverse industry participation
- Processor vendors, system OEMs, middleware vendors, application developers

¢ Many industry-leading experts involved in OpenCL's design
- A healthy diversity of industry perspectives

* Apple made initial proposal and is very active in the working group
- Serving as specification editor

aaveon B AMDZU ARM An%a"\)\.;ou\ W codeplny @ ERICSSON Z

(i@ ImaGgiEon ‘{25/“3".“’5

:':freescale FU]]TSU graphicREMEDY "mm
Q - nokia D& Heetaparn EpSE Quatcomw

moTOROLA NVIDIA.

s3 @ Lyy weomi Rroas  TosHiBA B Zii

© Copyright Khronos Group, 2010 - Page 4

Credit: Khronos Group



CPUs GPUs

Multiple cores driving Emerging Increasingly general
performance increases Intersection purpose data-parallel

computing

SEE

&

s )‘

\ OpenCL
Multi- \\-\ Heterogeneous Graphics
processor ' Computing APIs and

programming % Shading
— e.g. OpenMP N Languages

OpenCL is a programming framework for heterogeneous compute resources

© Copyright Khronos Group, 2010 - Page 3

Credit: Khronos Group



OpenCL: Computing as a Service

Host
(CPU)




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Host
(CPU)

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

(E';SJ) ””” l Compute Device 0 (Piatform 1)
[ Memory ] -
Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

(E';SJ) ””” [ Compute Device 0 (Piatform 1)
[ Memory ] °
[ Compute Device 1 (piatform 1)

s




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Host
(CPU)

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

Platform 0 (e.g. CPUs)

___________________________

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

— [I["] oo | Compute Device 0 (Platform 1)

(CPU) | I\ L —— pa—=al J
El_ Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

Host
(CPU)

|]|]|] I Compute Device 0 (piatform 1)

___________________________

Platform 1 (e.g. GPUs)



OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Host
(CPU)

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

(think “chip”,
has memory
interface)

—|

Host
(CPU)

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

(think “chip”,
has memory  —
interface)

Host
(CPU)

Compute Unit
(think “processor”,
has insn. fetch)

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

|]|]|] l Compute Device 0 (piatform 1)

El_ Compute Device 1 (piatform 1)




OpenCL: Computing as a Service

(think “chip”, :
h Compute Device 0 (piatform 0)
as memory —_
interface)
|_ Compute Device 1 (piatform 0)

Host
(CPU)

|]|]|] l Compute Device 0 (piatform 1)

) El_ Compute Device 1 (piatform 1)
Compute Unit _—
m

(think “processor”, Ao ]
has insn. fetch) - )U

Processing Element
(think “SIMD lane™)




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Host
(CPU)

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)

TRl




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)




OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

|_ Compute Device 1 (piatform 0)

00 |

Compute Device 0 (Piatform 1)

Compute Device 1 (piatform 1)

Device Language: ~ C99




Connection: Hardware <> Programming Model




O
e
O
=
0]
4=
£
S
T
—
a0
(@)
—
o
()
—
©
=
5
hud
T
T
c
.9
=
O
[}
c
c
(@)
O

iR BHEE 8 e
A BHEE 88

i S




Connection: Hardware <> Programming Model

i R
il




O
e
O
=
0]
4=
£
S
T
—
a0
(@)
—
o
()
—
©
=
5
hud
T
T
c
.9
=
O
[}
c
c
(@)
O

iR BHEE 8 e
A BHEE 88

i S




Connection: Hardware <> Programming Model

HE-0 B AR
0 B0 R
HE0 B0 B




Connection: Hardware <> Programming Model

Idea:

m Program as if there were
“infinitely” many cores

HE-0 B AR
0 B0 R
HE0 B0 B

m Program as if there were
“infinitely” many ALUs per
core




Connection: Hardware <> Programming Model

0
-8 A

Consider: Which is easy to do automatically?
m Parallel program — sequential hardware

or

m Sequential program — parallel hardware?

T




O
e
O
=
0]
4=
£
S
T
—
a0
(@)
—
o
()
—
Q]
=
5
hud
T
T
c
.9
=
O
[}
c
c
(@)
O




Connection: Hardware <> Programming Model

} Axis 0

Axis 1

HE-0 B AR
0 B0 R
HE0 B0 B




Connection: Hardware <> Programming Model

} Axis 0

Axis 1

HE-0 B AR
0 B0 R
HE0 B0 B

Hardware



Connection: Hardware <> Programming Model

} Axis 0

Axis 1

Software representation

HE-0 B AR
0 B0 R

HE0 B0 B

Hardware




Connection: Hardware <> Programming Model

} Axis 0

S 4 chosaln

Axis 1
'AE'
2N

11}

Software representation

= (= =]
R HH £H
E B B
= B Ea
= = (=]
R BH £
E E E
[Es) == =l
= = =]
HHH B B
= =] =
Em FEE B
Hardware




Connection: Hardware <> Programming Model

} Axis 0

ik} Gatp

el

n-or- i

Axis 1
'AE
2N

HE-0 B AR
0 B0 R
HE0 B0 B

Software representation
Hardware



Connection: Hardware <> Programming Model

} Axis 0

ik} Gatp

el

n-or- i

Axis 1
'AE
2N

(Work) Item
Software representatron

HE-0 B AR
0 B0 R
HE0 B0 B

Hardware



Connection: Hardware <> Programming Model

} Axis 0

Axis 1

Software representation

HE-0 B AR
0 B0 R

HE0 B0 B

Hardware




Connection: Hardware <> Programming Model

} Axis 0

Axis 1

Software representation

= (= =]
R HH £H
E B B
N

= =]
R BH £
E E E
[Es) == =l
= = =]
HHH B B
= =] =
Em FEE B
Hardware




Connection: Hardware <> Programming Model

=7 AXIS U o~

Axis 1

HE-0 B AR
0 B0 R
HE0 B0 B

Software representation
Hardware



Connection: Hardware <> Programming Model

I AXI

Axis 1

Software representation

=
R HH £H
E B B
= B Ea
= = (=]
R BH £
E E E
[Es) == =l
= = =]
HHH B B
= =] =
Em FEE B
Hardware




Connection: Hardware <> Programming Model

I =7 R~XI -
Z = ] ESE==E=spNE=Es
‘UREIRENES
Ea = Ea
= =
'g% ‘ ‘\— =l =
™ g™ e
S e
=) (=) ]
EE = =
Software representation
Hardware




Connection: Hardware <> Programming Model

Axis 1

Axis 0

Software representation

f?

= = =
R HH £H
E B B
PRI
R BH £
E E E
F =
HHH B B
= =] =
Em FEE B
Hardware




Connection: Hardware <> Programming Model

Axis 1

Software representation

f?

= = =

HH R EH
E B B
= =
R HH EH
E E E
er) (el [E
R R HH
= =] =
=] FErl ==
Hardware




Connection: Hardware <> Programming Model

I AXiSO T;-‘-
ESE==E=spNE=Es
e, g =) (=) (]
= =
o mmmmn - mmmn - mmmm wmm R e
—
= = [
% er) (el [E
=) (=) ]
EE = =
Software representation
Hardware



Connection: Hardware <> Programming Model

’ AXIET] - - =
T T T T FH B =
d ﬁ ﬁ ﬁ | =
e e | e
—
p ERE=IE
< = = =
N ‘= = =
| ERE=E
e Bl
Software representation
Hardware



Connection: Hardware <> Programming Model

} Axis 0

S S mENN S EEEN " EEEE " ENEE

Axis 1

Software representation

Really: Group provides
pool of concurrency to
draw from.

X.Y,Z order within group
matters. (Not among
groups, though.)




Connection: Hardware <> Programming Model

’ AXIET] - - =
T T T T FH B =
d ﬁ ﬁ ﬁ | =
e e | e
—
p ERE=IE
< = = =
N ‘= = =
| ERE=E
e Bl
Software representation
Hardware



Connection: Hardware <> Programming Model

f Axis 0 /E =]
7 EEEE
anmnig EnE

p » B S
» sinnlydl W W
| ISR Y
—
g p 4 lr‘, // - - -
< '/' '1' /' Il I N el
/ / = B
=) (=) ]
—
Software representation
Hardware



Connection: Hardware <> Programming Model

Axis 0

B

1
|

——

v

m get_local_id(axis)?/size(axis)?
B get_group_id(axis)?/num _groups(axis)?

m get_global id(axis)?/size(axis)?

axis=0,1,2,...

Software representation

HE0 B0 B

Hardware




Grids can be 1,2,3-dimensional.

f AXISU

| 5

m get_local_id(axis)?/size(axis)?

——

B get_group_id(axis)?/num _groups(axis)?

m get_global id(axis)?/size(axis)?

axis=0,1,2,...

HE0 B0 B

Software representation
Hardware




PyOpenCL



DEMO TIME



Outline

Parallel patterns
m Map
m Reduce
m Scan



Outline

Parallel patterns
m Map



yi = fi(x;)

where i € {1,...,N}.

Notation: (also for rest of this lecture)
® X;: inputs
m y;. outputs

m f;: (pure) functions (i.e. no side effects)



where i € {

When does a function have a “side effect”?

In addition to producing a value, it
m modifies non-local state, or

m has an observable interaction with the
outside world.

TR

TV

Notation: (also for rest of this lecture)

® X;: inputs

m y;. outputs

m f;: (pure) functions (i.e. no side effects)




yi = fi(x;)

where i € {1,...,N}.

Notation: (also for rest of this lecture)
® X;: inputs
m y;. outputs

m f;: (pure) functions (i.e. no side effects)



yi = fi(x;)

where i € {1,...,N}.

Notation: (also for rest of this lecture)
® X;: inputs
m y;. outputs
m f;: (pure) functions (i.e. no side effects)
Often: fy =---=fy. Then

m Python function map



Map: Graph Representation

Lstadest




Map: Graph Representation

Lstadest

Trivial? Often: no.




Embarrassingly Parallel: Examples

Surprisingly useful:
m Element-wise linear algebra:
Addition, scalar multiplication (not
inner product)

m Image Processing: Shift, rotate,
clip, scale, ...

Monte Carlo simulation

(Brute-force) Optimization

Random Number Generation

Encryption, Compression
(after blocking)



DEMO TIME



Outline

Parallel patterns

m Reduce



Yy = f("'f(f(xlax2)7x3)7°"7XN)

where N is the input size.



Yy = f("'f(f(xlax2)7x3)7°"7XN)

where N is the input size.

Also known as. ..

m Python function reduce



Reduction: Graph




Reduction: Graph

Painful! Not parallelizable.




Approach to Reduction

Can we do better?

“Tree" very imbalanced. What property
of f would allow ‘rebalancing’?



Approach to Reduction

Can we do better?

“Tree" very imbalanced. What property
of f would allow ‘rebalancing’?

F(f(x,y),2) = f(x,f(y, 2))
Looks less improbable if we let
xoy=f(x,y):

xo(yoz))=(xoy)oz

Has a very familiar name: Associativity



Reduction: A Better Graph




Reduction: Examples

m Sum, Inner Product, Norm
m Occurs in iterative methods

N

Minimum, Maximum

Data Analysis

m Evaluation of Monte Carlo
Simulations

List Concatenation, Set Union
Matrix-Vector product (but...)



DEMO TIME



Outline

Parallel patterns

m Scan



Y1 = X1
yo = f(y1,x0)

yn = flyn—1,xn)

where N is the input size. (Think: N large, f(x,y) =x+y)

m Prefix Sum/Cumulative Sum
m Abstract view of: loop-carried dependence
m Also possible: Segmented Scan



NEEEEE

Y1

Id Y5

ololololo)




This can't possibly be parallelized.

7
Xo Or can it?

Y1




This can't possibly be parallelized.
Or can it?

Again: Need assumptions on f.
Associativity, commutativity.

X0

Y2




Map Reduce Scan

Scan: Implementation

Part 3: OpenCL



Map Reduce Scan

Scan: Implementation

Work-efficient?

Part 3: OpenCL



Scan: Examples

Low-level building block for many
higher-level algorithms algorithms

m Index computations (!)
m E.g. sorting

Anything with a loop-carried
dependence

One row of triangular solve

Segment numbering if boundaries
are known

FIR/IIR Filtering

G.E. Blelloch:
Prefix Sums and their Applications



http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Scan: Issues

m Subtlety: Inclusive/Exclusive Scan
m Pattern sometimes hard to
recognize
m But shows up surprisingly often
m Need to prove
associativity/commutativity




DEMO TIME



Scan: Features

m “Map” processing on input: f(x;) 0O
m Also: stencils f(xj_1, x;)
m “Map” processing on output
m Output stencils
m Inclusive/Exclusive scan

m Segmented scan

m Works on compound types O O
m Efficient!



Scan: Features

m “Map” processing on input: f(x;)
m Also: stencils f(xj_1, x;)

m “Map” processing on output

m Output stencils

m Inclusive/Exclusive scan

m Segmented scan
m Works on compound
m Efficient!

Scan: a fundamental parallel primitive.

Anything involving index
changes/renumbering!
(e.g. sort, filter, ...)




Scan: More Algorithms

copy-if

remove_if

partition

unique

sort (plain and key-value)
build_ list of_lists

bin_sort

All in pyopencl, all built on scan.



OpenCL runtime
m A Kingdom of Nouns
m Synchronization



OpenCL runtime
m A Kingdom of Nouns



OpenCL Object Diagram

Platform

1

DevicelD

0.1+
CommandQueue ;

Event

1

Program

1

Kernel

Credit: Khronos Group

Context

1

MemObject

{abstract}

Sampler

o

1 Buffer

Image

S



CL “Platform”

m “Platform”: a collection of devices, all from
the same vendor.

m All devices in a platform use same CL
driver/implementation.

m Multiple platforms can be used from one
program — [CD.
1ibOpenCL.so: ICD loader

/etc/0OpenCL/vendors/somename.icd:
Plain text file with name of .so containing
CL implementation.




CL “Compute Device"

CL Compute Devices:
m CPUs, GPUs, accelerators, ...
® Anything that fits the programming model.
m A processor die with an interface to off-chip
memory

m Can get list of devices from platform.



Contexts

context = cl.Context(devices=None | [devl, dev2], dev_type=None)
context = cl. create_some_context( interactive =True)

m Spans one or more Devices
m Create from device type or list of devices
m See docs for c1.Platform, cl.Device
+* \E//\\‘ m dev_type: DEFAULT, ALL, CPU, GPU
/\// \ \\/\ m Needed to. ..

=

m ...allocate Memory Objects
m ...create and build Programs
® ...host Command Queues

m ...execute Grids



OpenCL: Command Queues

m Host and Device run
asynchronously
m Host submits to queue:

m Computations

m Memory Transfers
m Sync primitives
[

m Host can wait for
drained queue

Device

m Profiling




Command Queues and Events

queue = cl.CommandQueue(context, device=None,
properties =None | [(prop, value ),...])

m Attached to single device
m cl.command_queue_properties. . .

= OUT_OF_ORDER_EXEC_MODE_ENABLE:
Do not force sequential execution
m PROFILING_ENABLE:
Gather timing info




Capturing Dependencies

B = f(A)
C =g(B)
E = f(C)
F =h(C)
G = g(E,F)
P = p(B)
Q =q(B)

R = r(G,P,Q)




m Switch queue to out-of-order
mode!

m Specify as list of events using
wait_for= optional keyword to
enqueue _XXX.

m Can also enqueue barrier.

m Common use case:
Transmit/receive from other MPI
ranks.

m Possible in hardware on Nv Fermi,

AMD Cayman: Submit parallel
work to increase machine use.

m Not yet ubiquitously
implemented




Memory Objects: Buffers

buf = cl. Buffer(context, flags, size=0, hostbuf=None)

m Chunk of device memory
m No type information: "“Bag of bytes”

m Observe: Not tied to device.
— no fixed memory address
— pointers do not survive kernel launches
— movable between devices
— not even allocated before first use!
m flags:

= READ_ONLY/WRITE_ONLY/READ_WRITE
m {ALLOC,COPY,USE}_HOST_PTR




Memory Objects: Buffers

buf = cl. Buffer(context, flags, size=0, hostbuf=None)

COPY_HOST_PTR:

m Use hostbuf as initial content of buffer
USE_HOST_PTR:

m hostbuf /s the buffer.

m Caching in device memory is allowed.
ALLOC_HOST_PTR:

m New host memory (unrelated to
hostbuf) is visible from device and host.




Memory Objects: Buffers

buf = cl. Buffer(context, flags, size=0, hostbuf=None)

m Specify hostbuf or size (or both)

m hostbuf: Needs Python Buffer Interface
e.g. numpy.ndarray, str.

® Important: Memory layout matters

m Passed to device code as pointers
(e.g. float *, int *)

m enqueue_copy(queue, dest, src)

m Can be mapped into host address space:
cl.MemoryMap.




Programs and Kernels

prg = cl.Program(context, src)

m src: OpenCL device code
m Derivative of C99
m Functions with __kernel attribute
can be invoked from host
m prg.build(options="",
devices=None)

m kernel = prg.kernel_name

m kernel(queue,
(Gx, Gy, Gy), (Lx, Ly, Ly),
arg, ...,
wait_for=None)



Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg, ..., wait_for=None)

arg may be:
m None (a NULL pointer)

® numpy sized scalars:
numpy .int64,numpy.float32, ...
m Anything with buffer interface:
numpy .ndarray, str

m Buffer Objects

m Also: cl.Image, cl.Sampler,
cl.LocalMemory



Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg, ..., wait_for=None)

Explicitly sized scalars:
8 Annoying, error-prone.

Better:
kernel.set_scalar arg dtypes([
numpy.int32, None,
numpy .float32])

Use None for non-scalars.



OpenCL Object Diagram

Platform

1

DevicelD

0.1+
CommandQueue ;

Event

1

Program

1

Kernel

Credit: Khronos Group

Context

1

MemObject

{abstract}

Sampler

o

1 Buffer

Image

S



Outline

OpenCL runtime

m Synchronization



Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.




Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

m Intra-group:
barrier(...),

CLK_{LOCAL,GLOBAL} MEM _FENCE

m Inter-group:
Kernel launch

m CPU-GPU:
Command queues, Events




Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.



Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:
m Work groups may read the same information from global
memory.
m But: Two work groups may not validly write different things
to the same global memory.
m Kernel launch serves as

m Global barrier
m Global memory fence



Synchronization

What is a Barrier?




Synchronization

What is a Barrier?




Synchronization

What is a Barrier?




Synchronization

What is a Barrier?




Synchronization

What is a Barrier?




Synchronization

What is a Barrier?




Synchronization

What is a Barrier?




Outline

OpenCL implementations



The Nvidia CL implementation

Targets only GPUs

Notes:
m Nearly identical to CUDA
m No native C-level JIT in CUDA (—

«D PyCUDA)

nVIDIA m Page-locked memory:
® Use CL_MEM_ALLOC_HOST_PTR.

(Careful: double meaning)




The Apple CL implementation

Targets CPUs and GPUs

General notes:
m Different header name
OpenCL/cl.h instead of CL/cl.h
Use -framework OpenCL for C
access.
m Beware of imperfect compiler cache
implementation
(ignores include files)
CPU notes:

m One work item per processor

GPU similar to hardware vendor
implementation.
(New: Intel w/ Sandy Bridge)




The AMD CL implementation

r Targets CPUs and GPUs (from both AMD and Nvidia)
* GPU notes:
a m Wide SIMD groups (64)
m GCN: Vector and scalar unit (previously VLIW4/5)
m very flop-heavy machine
m — ILP and explicit SIMD
z CPU notes:

m Many work items per processor (emulated)
m “APU": Growing CPU/GPU integration




The Intel CL implementation

CPUs, GPUs with lvy Bridge+
CPU notes:

m Good vectorizing compiler

m Only implementation of out-of-order queues

for now n ®
m Based on Intel TBB lntel

GPU notes:
m Flexible design: SIMDm VLIWn
m Lots of fixed-function hardware

m Last-level Cache (LLC) integrated between
CPU and GPU




	OpenCL
	PyOpenCL
	Parallel patterns
	Map
	Reduce
	Scan

	Appendix
	OpenCL runtime
	A Kingdom of Nouns
	Synchronization



