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High-performance code is challenging;:

m designed to push machines, models, and methods to the limits
of their capabilities

m often repurposed — high demands on flexibility



Recipe: Split ‘math work’ from ‘performance work’

m Build Mathematically-oriented mini-languages (‘DSLs")
m Apply domain-specific optimizations and transformations
m Leverage tools to generate GPU/multi-core code from DSL

m Create glue that ties components together
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Necessary consequence:
The computation itself is now data that we
will manipulate programmatically.
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Getting the software

Core packages:
m Python: https://www.python.org
® numpy: https://www.numpy.org
m pymbolic: https://github.com/inducer/pymbolic
m PyOpenCL: https://github.com/pyopencl/pyopencl
m loopy: https://github.com/inducer/loopy
All open-source under MIT/BSD licenses.
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