
uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Part 3: OpenCL

Andreas Klöckner

Computer Science
University of Illinois at Urbana-Champaign

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Outline

1 OpenCL

2 PyOpenCL

3 Parallel patterns

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

Vendor-neutral

Comes with RTCG

Defines:

Host-side programming interface (library)

Device-side programming language (!)

Andreas Klöckner Part 3: OpenCL

OpenCL PyOpenCL Patterns

Who?

© Copyright Khronos Group, 2010 - Page 4

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design

- A healthy diversity of industry perspectives

• Apple made initial proposal and is very active in the working group

- Serving as specification editor

Credit: Khronos Group

Andreas Klöckner Part 3: OpenCL

OpenCL PyOpenCL Patterns

Why?

© Copyright Khronos Group, 2010 - Page 3

Processor Parallelism

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general
purpose data-parallel

computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL is a programming framework for heterogeneous compute resources

Credit: Khronos Group

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware

Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

(Work) Group

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

(Work) Group

(Work) Item

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

get local id(axis)?/size(axis)?

get group id(axis)?/num groups(axis)?

get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

get local id(axis)?/size(axis)?

get group id(axis)?/num groups(axis)?

get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Outline

1 OpenCL

2 PyOpenCL

3 Parallel patterns

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns

DEMO TIME

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Outline

1 OpenCL

2 PyOpenCL

3 Parallel patterns
Map
Reduce
Scan

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Outline

1 OpenCL

2 PyOpenCL

3 Parallel patterns
Map
Reduce
Scan

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

xi : inputs

yi : outputs

fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

modifies non-local state, or

has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

Python function map

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

xi : inputs

yi : outputs

fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

modifies non-local state, or

has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

Python function map

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

xi : inputs

yi : outputs

fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

modifies non-local state, or

has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

Python function map

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

xi : inputs

yi : outputs

fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

modifies non-local state, or

has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

Python function map

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map: Graph Representation

x0

y0

f0

x1

y1

f1

x2

y2

f2

x3

y3

f3

x4

y4

f4

x5

y5

f5

x6

y6

f6

x7

y7

f7

x8

y8

f8

Trivial? Often: no.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map: Graph Representation

x0

y0

f0

x1

y1

f1

x2

y2

f2

x3

y3

f3

x4

y4

f4

x5

y5

f5

x6

y6

f6

x7

y7

f7

x8

y8

f8

Trivial? Often: no.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Embarrassingly Parallel: Examples

Surprisingly useful:

Element-wise linear algebra:
Addition, scalar multiplication (not
inner product)

Image Processing: Shift, rotate,
clip, scale, . . .

Monte Carlo simulation

(Brute-force) Optimization

Random Number Generation

Encryption, Compression
(after blocking)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

DEMO TIME

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Outline

1 OpenCL

2 PyOpenCL

3 Parallel patterns
Map
Reduce
Scan

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)
where N is the input size.

Also known as. . .

Python function reduce

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)
where N is the input size.

Also known as. . .

Python function reduce

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Painful! Not parallelizable.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Painful! Not parallelizable.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Approach to Reduction

f (
x ,
y)
?

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Approach to Reduction

f (
x ,
y)
?

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction: Examples

Sum, Inner Product, Norm

Occurs in iterative methods

Minimum, Maximum

Data Analysis

Evaluation of Monte Carlo
Simulations

List Concatenation, Set Union

Matrix-Vector product (but. . .)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

DEMO TIME

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Outline

1 OpenCL

2 PyOpenCL

3 Parallel patterns
Map
Reduce
Scan

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan

y1 = x1
y2 = f (y1, x2)
... = ...

yN = f (yN−1, xN)
where N is the input size. (Think: N large, f (x , y) = x + y)

Prefix Sum/Cumulative Sum

Abstract view of: loop-carried dependence

Also possible: Segmented Scan

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

This can’t possibly be parallelized.
Or can it?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

This can’t possibly be parallelized.
Or can it?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

This can’t possibly be parallelized.
Or can it?
Again: Need assumptions on f .
Associativity, commutativity.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Implementation

Work-efficient?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Implementation

Work-efficient?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Examples

Low-level building block for many
higher-level algorithms algorithms

Index computations (!)

E.g. sorting

Anything with a loop-carried
dependence

One row of triangular solve

Segment numbering if boundaries
are known

FIR/IIR Filtering

G.E. Blelloch:
Prefix Sums and their Applications

Andreas Klöckner Part 3: OpenCL

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Issues

Subtlety: Inclusive/Exclusive Scan

Pattern sometimes hard to
recognize

But shows up surprisingly often
Need to prove
associativity/commutativity

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

DEMO TIME

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Features

“Map” processing on input: f (xi)

Also: stencils f (xi−1, xi)

“Map” processing on output

Output stencils
Inclusive/Exclusive scan

Segmented scan

Works on compound types

Efficient!

Scan: a fundamental parallel primitive.

Anything involving index
changes/renumbering!
(e.g. sort, filter, . . .)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: Features

“Map” processing on input: f (xi)

Also: stencils f (xi−1, xi)

“Map” processing on output

Output stencils
Inclusive/Exclusive scan

Segmented scan

Works on compound types

Efficient!
Scan: a fundamental parallel primitive.

Anything involving index
changes/renumbering!
(e.g. sort, filter, . . .)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Scan: More Algorithms

copy if

remove if

partition

unique

sort (plain and key-value)

build list of lists

bin sort

All in pyopencl, all built on scan.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Outline

4 OpenCL runtime
A Kingdom of Nouns
Synchronization

5 OpenCL implementations

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Outline

4 OpenCL runtime
A Kingdom of Nouns
Synchronization

5 OpenCL implementations

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

OpenCL Object Diagram

Last Revision Date: 9/30/10 Page 20

Figure 2.1 - OpenCL UML Class Diagram

Credit: Khronos Group

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

CL “Platform”

“Platform”: a collection of devices, all from
the same vendor.

All devices in a platform use same CL
driver/implementation.

Multiple platforms can be used from one
program → ICD.

libOpenCL.so: ICD loader

/etc/OpenCL/vendors/somename.icd:
Plain text file with name of .so containing
CL implementation.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

CL “Compute Device”

CL Compute Devices:

CPUs, GPUs, accelerators, . . .

Anything that fits the programming model.

A processor die with an interface to off-chip
memory

Can get list of devices from platform.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Contexts

context = cl.Context(devices=None | [dev1, dev2], dev type=None)
context = cl. create some context(interactive =True)

Spans one or more Devices

Create from device type or list of devices

See docs for cl.Platform, cl.Device

dev type: DEFAULT , ALL, CPU, GPU

Needed to. . .

. . . allocate Memory Objects

. . . create and build Programs

. . . host Command Queues

. . . execute Grids

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

OpenCL: Command Queues

Host and Device run
asynchronously

Host submits to queue:

Computations
Memory Transfers
Sync primitives
. . .

Host can wait for
drained queue

Profiling

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Command Queues and Events

queue = cl.CommandQueue(context, device=None,
properties =None | [(prop, value),...])

Attached to single device

cl.command queue properties. . .

OUT OF ORDER EXEC MODE ENABLE:
Do not force sequential execution
PROFILING ENABLE:
Gather timing info

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Capturing Dependencies

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Switch queue to out-of-order
mode!

Specify as list of events using
wait for= optional keyword to
enqueue XXX.

Can also enqueue barrier.

Common use case:
Transmit/receive from other MPI
ranks.

Possible in hardware on Nv Fermi,
AMD Cayman: Submit parallel
work to increase machine use.

Not yet ubiquitously
implemented

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Capturing Dependencies

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Switch queue to out-of-order
mode!

Specify as list of events using
wait for= optional keyword to
enqueue XXX.

Can also enqueue barrier.

Common use case:
Transmit/receive from other MPI
ranks.

Possible in hardware on Nv Fermi,
AMD Cayman: Submit parallel
work to increase machine use.

Not yet ubiquitously
implemented

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Chunk of device memory

No type information: “Bag of bytes”

Observe: Not tied to device.
→ no fixed memory address
→ pointers do not survive kernel launches
→ movable between devices
→ not even allocated before first use!

flags:

READ ONLY/WRITE ONLY/READ WRITE

{ALLOC,COPY,USE} HOST PTR

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

COPY HOST PTR:

Use hostbuf as initial content of buffer

USE HOST PTR:

hostbuf is the buffer.

Caching in device memory is allowed.

ALLOC HOST PTR:

New host memory (unrelated to
hostbuf) is visible from device and host.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Specify hostbuf or size (or both)

hostbuf: Needs Python Buffer Interface
e.g. numpy.ndarray, str.

Important: Memory layout matters

Passed to device code as pointers
(e.g. float *, int *)

enqueue copy(queue, dest, src)

Can be mapped into host address space:
cl.MemoryMap.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Programs and Kernels

prg = cl.Program(context, src)

src: OpenCL device code

Derivative of C99
Functions with kernel attribute
can be invoked from host

prg.build(options="",

devices=None)

kernel = prg.kernel name

kernel(queue,

(Gx ,Gy ,Gz), (Lx , Ly , Lz),
arg, ...,

wait for=None)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

arg may be:

None (a NULL pointer)

numpy sized scalars:
numpy.int64,numpy.float32,...

Anything with buffer interface:
numpy.ndarray, str

Buffer Objects

Also: cl.Image, cl.Sampler,
cl.LocalMemory

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

Explicitly sized scalars:
6 Annoying, error-prone.

Better:
kernel.set scalar arg dtypes([

numpy.int32, None,

numpy.float32])

Use None for non-scalars.

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

OpenCL Object Diagram

Last Revision Date: 9/30/10 Page 20

Figure 2.1 - OpenCL UML Class Diagram

Credit: Khronos Group

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Outline

4 OpenCL runtime
A Kingdom of Nouns
Synchronization

5 OpenCL implementations

Andreas Klöckner Part 3: OpenCL

Runtime A Kingdom of Nouns Synchronization

Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

Intra-group:
barrier(...),
... =
CLK {LOCAL,GLOBAL} MEM FENCE

Inter-group:
Kernel launch

CPU-GPU:
Command queues, Events

Andreas Klöckner Part 3: OpenCL

Runtime A Kingdom of Nouns Synchronization

Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

Intra-group:
barrier(...),
... =
CLK {LOCAL,GLOBAL} MEM FENCE

Inter-group:
Kernel launch

CPU-GPU:
Command queues, Events

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

Work groups may read the same information from global
memory.

But: Two work groups may not validly write different things
to the same global memory.

Kernel launch serves as

Global barrier
Global memory fence

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

Work groups may read the same information from global
memory.

But: Two work groups may not validly write different things
to the same global memory.

Kernel launch serves as

Global barrier
Global memory fence

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime

Outline

4 OpenCL runtime

5 OpenCL implementations

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime

The Nvidia CL implementation

Targets only GPUs

Notes:

Nearly identical to CUDA

No native C-level JIT in CUDA (→
PyCUDA)

Page-locked memory:
Use CL MEM ALLOC HOST PTR.
(Careful: double meaning)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime

The Apple CL implementation

Targets CPUs and GPUs

General notes:

Different header name
OpenCL/cl.h instead of CL/cl.h
Use -framework OpenCL for C
access.

Beware of imperfect compiler cache
implementation
(ignores include files)

CPU notes:

One work item per processor

GPU similar to hardware vendor
implementation.
(New: Intel w/ Sandy Bridge)

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime

The AMD CL implementation

Targets CPUs and GPUs (from both AMD and Nvidia)

GPU notes:

Wide SIMD groups (64)

GCN: Vector and scalar unit (previously VLIW4/5)

very flop-heavy machine
→ ILP and explicit SIMD

CPU notes:

Many work items per processor (emulated)

“APU”: Growing CPU/GPU integration

Andreas Klöckner Part 3: OpenCL

uiuc-logo.pdf

Runtime

The Intel CL implementation

CPUs, GPUs with Ivy Bridge+

CPU notes:

Good vectorizing compiler

Only implementation of out-of-order queues
for now

Based on Intel TBB

GPU notes:

Flexible design: SIMDm VLIWn

Lots of fixed-function hardware

Last-level Cache (LLC) integrated between
CPU and GPU

®

Andreas Klöckner Part 3: OpenCL

	OpenCL
	PyOpenCL
	Parallel patterns
	Map
	Reduce
	Scan

	Appendix
	OpenCL runtime
	A Kingdom of Nouns
	Synchronization

