
uiuc-logo.pdf

Outline Software Overview

Domain-Specific Languages to High
Performance: Code Generation and

Transformation in Python
Part 1: Introduction

Andreas Klöckner

Computer Science
University of Illinois at Urbana-Champaign

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Outline

1 Outline

2 Software Overview

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.

achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.

achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.
achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.
achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.
achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Setting

High-performance code is challenging:

designed to push machines, models, and methods to the limits
of their capabilities

often repurposed → high demands on flexibility

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Goals

Recipe: Split ‘math work’ from ‘performance work’

Build Mathematically-oriented mini-languages (‘DSLs’)

Apply domain-specific optimizations and transformations

Leverage tools to generate GPU/multi-core code from DSL

Create glue that ties components together

Necessary consequence:
The computation itself is now data that we
will manipulate programmatically.

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Goals

Recipe: Split ‘math work’ from ‘performance work’

Build Mathematically-oriented mini-languages (‘DSLs’)

Apply domain-specific optimizations and transformations

Leverage tools to generate GPU/multi-core code from DSL

Create glue that ties components together

Necessary consequence:
The computation itself is now data that we
will manipulate programmatically.

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Introduction

IPython
Python
numpy

Building languages

Syntax trees
Expression languages
Operations on expression
trees
A first glimpse of code
generation

OpenCL as a vehicle for
code generation

Execution model
OpenCL + Python
High-performance
primitives

Case studies

numpy: broadcasting
numpy: einsum

UFL

Generating C

Using templating engines
Types and hybrid code
Structured code
generation (ASTs)

Code generation via Loopy

Loop polyhedra
Instructions and ordering
Loop transformation, and
data layout
Generating instructions
from DSLs

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Introduction

IPython
Python
numpy

Building languages

Syntax trees
Expression languages
Operations on expression
trees
A first glimpse of code
generation

OpenCL as a vehicle for
code generation

Execution model
OpenCL + Python
High-performance
primitives

Case studies

numpy: broadcasting
numpy: einsum

UFL

Generating C

Using templating engines
Types and hybrid code
Structured code
generation (ASTs)

Code generation via Loopy

Loop polyhedra
Instructions and ordering
Loop transformation, and
data layout
Generating instructions
from DSLs

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Outline

1 Outline

2 Software Overview

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

Getting the software

Core packages:

Python: https://www.python.org

numpy: https://www.numpy.org

pymbolic: https://github.com/inducer/pymbolic

PyOpenCL: https://github.com/pyopencl/pyopencl

loopy: https://github.com/inducer/loopy

All open-source under MIT/BSD licenses.

Andreas Klöckner DSL to High Performance

https://www.python.org
https://www.numpy.org
https://github.com/inducer/pymbolic
https://github.com/pyopencl/pyopencl
https://github.com/inducer/loopy


uiuc-logo.pdf

Outline Software Overview

DEMO TIME

Andreas Klöckner DSL to High Performance


	Outline
	Software Overview

