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High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.

achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·

Andreas Klöckner DSL to High Performance



uiuc-logo.pdf

Outline Software Overview

High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.

achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure → Understand → Improve → Measure →
Understand → Improve → · · ·
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Setting

High-performance code is challenging:

designed to push machines, models, and methods to the limits
of their capabilities

often repurposed → high demands on flexibility
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Goals

Recipe: Split ‘math work’ from ‘performance work’

Build Mathematically-oriented mini-languages (‘DSLs’)

Apply domain-specific optimizations and transformations

Leverage tools to generate GPU/multi-core code from DSL

Create glue that ties components together

Necessary consequence:
The computation itself is now data that we
will manipulate programmatically.
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Introduction

IPython
Python
numpy

Building languages

Syntax trees
Expression languages
Operations on expression
trees
A first glimpse of code
generation

OpenCL as a vehicle for
code generation

Execution model
OpenCL + Python
High-performance
primitives

Case studies

numpy: broadcasting
numpy: einsum

UFL

Generating C

Using templating engines
Types and hybrid code
Structured code
generation (ASTs)

Code generation via Loopy

Loop polyhedra
Instructions and ordering
Loop transformation, and
data layout
Generating instructions
from DSLs
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Getting the software

Core packages:

Python: https://www.python.org

numpy: https://www.numpy.org

pymbolic: https://github.com/inducer/pymbolic

PyOpenCL: https://github.com/pyopencl/pyopencl

loopy: https://github.com/inducer/loopy

All open-source under MIT/BSD licenses.
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DEMO TIME
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