
uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Part 3: OpenCL

Andreas Klöckner
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What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

Vendor-neutral

Comes with RTCG

Defines:

Host-side programming interface (library)

Device-side programming language (!)
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Who?

© Copyright Khronos Group, 2010 - Page 4

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design

- A healthy diversity of industry perspectives

• Apple made initial proposal and is very active in the working group

- Serving as specification editor 

Credit: Khronos Group
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Why?

© Copyright Khronos Group, 2010 - Page 3

Processor Parallelism

CPUs
Multiple cores driving 
performance increases

GPUs
Increasingly general 
purpose data-parallel 

computing

Graphics 
APIs and 
Shading 

Languages

Multi-
processor 

programming 
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL is a programming framework for heterogeneous compute resources

Credit: Khronos Group
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Andreas Klöckner Part 3: OpenCL



uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model
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Andreas Klöckner Part 3: OpenCL



uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

(Work) Group

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.
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Andreas Klöckner Part 3: OpenCL



uiuc-logo.pdf

OpenCL PyOpenCL Patterns

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of concurrency to
draw from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.
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Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

xi : inputs

yi : outputs

fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

modifies non-local state, or

has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

Python function map
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Andreas Klöckner Part 3: OpenCL



uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

xi : inputs

yi : outputs

fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

modifies non-local state, or

has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

Python function map
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Map: Graph Representation
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Trivial? Often: no.
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Embarrassingly Parallel: Examples

Surprisingly useful:

Element-wise linear algebra:
Addition, scalar multiplication (not
inner product)

Image Processing: Shift, rotate,
clip, scale, . . .

Monte Carlo simulation

(Brute-force) Optimization

Random Number Generation

Encryption, Compression
(after blocking)
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Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)
where N is the input size.

Also known as. . .

Python function reduce
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Reduction: Graph

y
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x6

Painful! Not parallelizable.
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Approach to Reduction

f (
x ,
y)
?

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity
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Reduction: A Better Graph
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Andreas Klöckner Part 3: OpenCL



uiuc-logo.pdf

OpenCL PyOpenCL Patterns Map Reduce Scan

Reduction: Examples

Sum, Inner Product, Norm

Occurs in iterative methods

Minimum, Maximum

Data Analysis

Evaluation of Monte Carlo
Simulations

List Concatenation, Set Union

Matrix-Vector product (but. . . )
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Scan

y1 = x1
y2 = f (y1, x2)
... = ...

yN = f (yN−1, xN)
where N is the input size. (Think: N large, f (x , y) = x + y)

Prefix Sum/Cumulative Sum

Abstract view of: loop-carried dependence

Also possible: Segmented Scan
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Scan: Graph
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This can’t possibly be parallelized.
Or can it?
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Scan: Graph
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This can’t possibly be parallelized.
Or can it?
Again: Need assumptions on f .
Associativity, commutativity.
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Scan: Implementation

Work-efficient?
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Scan: Examples

Low-level building block for many
higher-level algorithms algorithms

Index computations (!)

E.g. sorting

Anything with a loop-carried
dependence

One row of triangular solve

Segment numbering if boundaries
are known

FIR/IIR Filtering

G.E. Blelloch:
Prefix Sums and their Applications

Andreas Klöckner Part 3: OpenCL
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Scan: Issues

Subtlety: Inclusive/Exclusive Scan

Pattern sometimes hard to
recognize

But shows up surprisingly often
Need to prove
associativity/commutativity
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Scan: Features

“Map” processing on input: f (xi )

Also: stencils f (xi−1, xi )

“Map” processing on output

Output stencils
Inclusive/Exclusive scan

Segmented scan

Works on compound types

Efficient!

Scan: a fundamental parallel primitive.

Anything involving index
changes/renumbering!
(e.g. sort, filter, . . . )
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Scan: More Algorithms

copy if

remove if

partition

unique

sort (plain and key-value)

build list of lists

bin sort

All in pyopencl, all built on scan.
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Figure 2.1 - OpenCL UML Class Diagram 

Credit: Khronos Group
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CL “Platform”

“Platform”: a collection of devices, all from
the same vendor.

All devices in a platform use same CL
driver/implementation.

Multiple platforms can be used from one
program → ICD.

libOpenCL.so: ICD loader

/etc/OpenCL/vendors/somename.icd:
Plain text file with name of .so containing
CL implementation.
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CL “Compute Device”

CL Compute Devices:

CPUs, GPUs, accelerators, . . .

Anything that fits the programming model.

A processor die with an interface to off-chip
memory

Can get list of devices from platform.
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Contexts

context = cl.Context(devices=None | [dev1, dev2], dev type=None)
context = cl. create some context( interactive =True)

Spans one or more Devices

Create from device type or list of devices

See docs for cl.Platform, cl.Device

dev type: DEFAULT , ALL, CPU, GPU

Needed to. . .

. . . allocate Memory Objects

. . . create and build Programs

. . . host Command Queues

. . . execute Grids
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OpenCL: Command Queues

Host and Device run
asynchronously

Host submits to queue:

Computations
Memory Transfers
Sync primitives
. . .

Host can wait for
drained queue

Profiling

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2
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Command Queues and Events

queue = cl.CommandQueue(context, device=None,
properties =None | [(prop, value ),...])

Attached to single device

cl.command queue properties. . .

OUT OF ORDER EXEC MODE ENABLE:
Do not force sequential execution
PROFILING ENABLE:
Gather timing info
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Capturing Dependencies

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Switch queue to out-of-order
mode!

Specify as list of events using
wait for= optional keyword to
enqueue XXX.

Can also enqueue barrier.

Common use case:
Transmit/receive from other MPI
ranks.

Possible in hardware on Nv Fermi,
AMD Cayman: Submit parallel
work to increase machine use.

Not yet ubiquitously
implemented
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Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Chunk of device memory

No type information: “Bag of bytes”

Observe: Not tied to device.
→ no fixed memory address
→ pointers do not survive kernel launches
→ movable between devices
→ not even allocated before first use!

flags:

READ ONLY/WRITE ONLY/READ WRITE

{ALLOC,COPY,USE} HOST PTR
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Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

COPY HOST PTR:

Use hostbuf as initial content of buffer

USE HOST PTR:

hostbuf is the buffer.

Caching in device memory is allowed.

ALLOC HOST PTR:

New host memory (unrelated to
hostbuf) is visible from device and host.
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Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Specify hostbuf or size (or both)

hostbuf: Needs Python Buffer Interface
e.g. numpy.ndarray, str.

Important: Memory layout matters

Passed to device code as pointers
(e.g. float *, int *)

enqueue copy(queue, dest, src)

Can be mapped into host address space:
cl.MemoryMap.
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Programs and Kernels

prg = cl.Program(context, src)

src: OpenCL device code

Derivative of C99
Functions with kernel attribute
can be invoked from host

prg.build(options="",

devices=None)

kernel = prg.kernel name

kernel(queue,

(Gx ,Gy ,Gz), (Lx , Ly , Lz),
arg, ...,

wait for=None)
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Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

arg may be:

None (a NULL pointer)

numpy sized scalars:
numpy.int64,numpy.float32,...

Anything with buffer interface:
numpy.ndarray, str

Buffer Objects

Also: cl.Image, cl.Sampler,
cl.LocalMemory
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Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

Explicitly sized scalars:
6 Annoying, error-prone.

Better:
kernel.set scalar arg dtypes([

numpy.int32, None,

numpy.float32])

Use None for non-scalars.
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OpenCL Object Diagram
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Figure 2.1 - OpenCL UML Class Diagram 

Credit: Khronos Group
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4 OpenCL runtime
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Synchronization
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Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

Intra-group:
barrier(...),
... =
CLK {LOCAL,GLOBAL} MEM FENCE

Inter-group:
Kernel launch

CPU-GPU:
Command queues, Events
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Runtime A Kingdom of Nouns Synchronization

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

Work groups may read the same information from global
memory.

But: Two work groups may not validly write different things
to the same global memory.

Kernel launch serves as

Global barrier
Global memory fence
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Andreas Klöckner Part 3: OpenCL



uiuc-logo.pdf

Runtime A Kingdom of Nouns Synchronization

Synchronization

What is a Barrier?
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Runtime

The Nvidia CL implementation

Targets only GPUs

Notes:

Nearly identical to CUDA

No native C-level JIT in CUDA (→
PyCUDA)

Page-locked memory:
Use CL MEM ALLOC HOST PTR.
(Careful: double meaning)
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Runtime

The Apple CL implementation

Targets CPUs and GPUs

General notes:

Different header name
OpenCL/cl.h instead of CL/cl.h
Use -framework OpenCL for C
access.

Beware of imperfect compiler cache
implementation
(ignores include files)

CPU notes:

One work item per processor

GPU similar to hardware vendor
implementation.
(New: Intel w/ Sandy Bridge)
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The AMD CL implementation

Targets CPUs and GPUs (from both AMD and Nvidia)

GPU notes:

Wide SIMD groups (64)

GCN: Vector and scalar unit (previously VLIW4/5)

very flop-heavy machine
→ ILP and explicit SIMD

CPU notes:

Many work items per processor (emulated)

“APU”: Growing CPU/GPU integration
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Runtime

The Intel CL implementation

CPUs, GPUs with Ivy Bridge+

CPU notes:

Good vectorizing compiler

Only implementation of out-of-order queues
for now

Based on Intel TBB

GPU notes:

Flexible design: SIMDm VLIWn

Lots of fixed-function hardware

Last-level Cache (LLC) integrated between
CPU and GPU

®
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