
Introductory Scientific Computing
with Python

Basic SciPy and IPython notebooks

FOSSEE

Department of Aerospace Engineering
IIT Bombay

SciPy India, 2015
December, 2015

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 1 / 36

Solving linear systems

Outline

1 Solving linear systems

2 Finding Roots

3 ODEs

4 FFTs

5 IPython notebooks

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 2 / 36

Solving linear systems

Solution of equations
Consider,

3x + 2y − z = 1
2x − 2y + 4z = −2

−x +
1
2

y − z = 0

Solution:

x = 1
y = −2
z = −2

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 3 / 36

Solving linear systems

Solving using Matrices

Let us now look at how to solve this using matrices

In []: A = array([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])

In []: b = array([1, -2, 0])
In []: x = solve(A, b)

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 4 / 36

Solving linear systems

Solution:

In []: x
Out[]: array([1., -2., -2.])

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 5 / 36

Solving linear systems

Let’s check!

In []: Ax = dot(A, x)
In []: Ax
Out[]: array([1.00000000e+00, -2.00000000e+00,
-1.11022302e-16])

The last term in the matrix is should be 0!
We can use allclose() to check.

In []: allclose(Ax, b)
Out[]: True

5 m

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 6 / 36

Solving linear systems

Problem

Solve the set of equations:

x + y + 2z − w = 3
2x + 5y − z − 9w = −3
2x + y − z + 3w = −11

x − 3y + 2z + 7w = −5

10 m

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 7 / 36

Solving linear systems

Solution

Use solve()

x = −5
y = 2
z = 3
w = 0

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 8 / 36

Finding Roots

Outline

1 Solving linear systems

2 Finding Roots

3 ODEs

4 FFTs

5 IPython notebooks

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 9 / 36

Finding Roots

SciPy: roots

Calculates the roots of polynomials
To calculate the roots of x2 − 5x + 6

In []: coeffs = [1, -5, 6]
In []: roots(coeffs)
Out[]: array([3., 2.])

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 10 / 36

Finding Roots

SciPy: fsolve
Find the root of sin(z) + cos2(z) nearest to 0

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 11 / 36

Finding Roots

fsolve

In []: from scipy.optimize import fsolve

Finds the roots of a system of non-linear equations
Input arguments - Function and initial estimate
Returns the solution

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 12 / 36

Finding Roots

fsolve . . .

In []: def g(z):
....: return sin(z)+cos(z)*cos(z)

In []: fsolve(g, 0)
Out[]: -0.66623943249251527

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 13 / 36

Finding Roots

Exercise Problem

Find the root of the equation
x2 − sin(x) + cos2(x) = tan(x) nearest to 0

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 14 / 36

Finding Roots

Solution

def g(x):
return x**2 - sin(x) + cos(x)*cos(x) - tan(x)

fsolve(g, 0)

20 m Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 15 / 36

ODEs

Outline

1 Solving linear systems

2 Finding Roots

3 ODEs

4 FFTs

5 IPython notebooks

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 16 / 36

ODEs

Solving ODEs using SciPy

Consider the spread of an epidemic in a population
y is the number of infected people
dy
dt = ky(L − y) gives the spread of the disease
L is the total population.
Use L = 2.5 × 105, k = 3 × 10−3, y(0) = 250

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 17 / 36

ODEs

Solving ODEs using SciPy

Define a function as below

In []: from scipy.integrate import odeint
In []: def epid(y, t):

.... k = 3.0e-5

.... L = 2.5e5

.... return k*y*(L-y)

....

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 18 / 36

ODEs

Solving ODEs using SciPy . . .

In []: t = linspace(0, 12, 61)

In []: y = odeint(epid, 250, t)

In []: plot(t, y)

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 19 / 36

ODEs

Result

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 20 / 36

ODEs

ODEs - Simple Pendulum
We shall use the simple ODE of a simple pendulum.

θ̈ = −
g
L

sin(θ)

This equation can be written as a system of two
first order ODEs

θ̇ = ω (1)

ω̇ = −
g
L

sin(θ) (2)

At t = 0 :

θ = θ0(10o) & ω = 0 (Initial values)

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 21 / 36

ODEs

ODEs - Simple Pendulum . . .

Use odeint to do the integration

In []: def pend_int(initial, t):
.... theta = initial[0]
.... omega = initial[1]
.... g = 9.81
.... L = 0.2
.... F=[omega, -(g/L)*sin(theta)]
.... return F
....

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 22 / 36

ODEs

ODEs - Simple Pendulum . . .

t is the time variable
initial has the initial values

In []: t = linspace(0, 20, 101)
In []: initial = [10*2*pi/360, 0]

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 23 / 36

ODEs

ODEs - Simple Pendulum . . .

In []: from scipy.integrate import odeint

In []: pend_sol = odeint(pend_int,
initial,t)

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 24 / 36

ODEs

Result

30 m

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 25 / 36

FFTs

Outline

1 Solving linear systems

2 Finding Roots

3 ODEs

4 FFTs

5 IPython notebooks

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 26 / 36

FFTs

The FFT

We have a simple signal y(t)
Find the FFT and plot it

In []: t = linspace(0, 2*pi, 500)
In []: y = sin(4*pi*t)

In []: f = fft(y)
In []: freq = fftfreq(500, t[1] - t[0])

In []: plot(freq[:250], abs(f)[:250])
In []: grid()

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 27 / 36

FFTs

FFTs cont. . .

In []: y1 = ifft(f) # inverse FFT
In []: allclose(y, y1)
Out[]: True

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 28 / 36

FFTs

FFTs cont. . .
Let us add some noise to the signal
In []: yr = y + random(size=500)*0.2
In []: yn = y + normal(size=500)*0.2

In []: plot(t, yr)
In []: figure()
In []: plot(freq[:250],

...: abs(fft(yn))[:250])

random: produces uniform deviates in [0, 1)
normal: draws random samples from a Gaussian
distribution
Useful to create a random matrix of any shape

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 29 / 36

FFTs

FFTs cont. . .

Filter the noisy signal:

In []: from scipy import signal
In []: yc = signal.wiener(yn, 5)
In []: clf()
In []: plot(t, yc)
In []: figure()
In []: plot(freq[:250],

...: abs(fft(yc))[:250])

Only scratched the surface here . . . 40 m

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 30 / 36

IPython notebooks

Outline

1 Solving linear systems

2 Finding Roots

3 ODEs

4 FFTs

5 IPython notebooks

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 31 / 36

IPython notebooks

Notebooks?

One document
HTML (MD) + LATEX math
Python code
Results
Interactive widgets
Easy sharing

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 32 / 36

IPython notebooks

Starting Notebooks

$ ipython notebook
OR
$ jupyter notebook

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 33 / 36

IPython notebooks

Notebook demo

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 34 / 36

IPython notebooks

Things we have learned

Solving Linear Equations
Defining Functions
Finding Roots
Solving ODEs
FFTs and basic signal processing
Using IPython notebooks

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 35 / 36

IPython notebooks

Further reading

ipython.github.com/ipython-doc

matplotlib.sf.net/contents.html

scipy.org/Tentative_NumPy_Tutorial

docs.scipy.org/doc/scipy/reference/
tutorial

Prabhu (FOSSEE – IITB) Basic SciPy and Mayavi 36 / 36

ipython.github.com/ipython-doc
matplotlib.sf.net/contents.html
scipy.org/Tentative_NumPy_Tutorial
docs.scipy.org/doc/scipy/reference/tutorial
docs.scipy.org/doc/scipy/reference/tutorial

	Solving linear systems
	Finding Roots
	ODEs
	FFTs
	IPython notebooks

