
Modeling and solving mathematical optimization
problems with Python

SciPy India 2015

Industrial Engineering and Operations Research
Indian Institute of Technology Bombay

(IEOR@IITB) Pyomo 1 / 22

Outline

Introduction

Pyomo

(IEOR@IITB) Pyomo 2 / 22

Introduction

What is Optimization?

Optimization is a problem of decision making in which we need to choose between
various alternatives under certain conditions.

Mathematical Modeling

I Modeling is a fundamental process in many aspects of scientific research,
engineering, and business.

I Modeling involves the formulation of a simplified representation of a system or
real-world object.

I Allow structured representation of knowledge about the original system.

I Optimization models are mathematical models that include functions that
represent goals or objectives for the system being modelled with given
condition.

(IEOR@IITB) Pyomo 3 / 22

Introduction

General form of a mathematical model

min or max f (x1, ..., xn) (Objective function)
subject to, g(x1, ..., xn) ≥ 0 (functional constraints)

x1, ..., xn ∈ S (set constraints)

x1, ..., xn are called decision variables

In another words, the goal is to find x1, ..., xn such that

I They satisfy the constraints.

I If no such value exist for x1, ..., xn, the problem is infeasible.

I They achieve min or max objective function value (may be unbounded)

(IEOR@IITB) Pyomo 4 / 22

Introduction

Figure 1 : Types of Deterministic Optimization Models

(IEOR@IITB) Pyomo 5 / 22

Introduction

Applications of optimization

I Scheduling of Buses/trains

I Transportation network design

I Supply chain optimization

I Optimum circuit design of PCB

I Design optimization of various mechanical components

I Process optimization in chemical industry

I Designing of the sharing network in internet

I Search engine optimization

I Shop floor layout planning

I Production planning and scheduling

I Hospital management systems etc.

(IEOR@IITB) Pyomo 6 / 22

Introduction

Popular optimization solvers

I CPLEX

I Gurobi

I GLPK

I CLP, CBC, IPOPT (part of COIN-OR)

I LINDO and Lingo etc.

Python interface for optimization

I Pyomo→ used for LP models.

I PuLP→ used for LP models.

(IEOR@IITB) Pyomo 7 / 22

Pyomo

I A Python-based modeling tool for optimization models.

I Goal is to provide a platform for expressing optimization models that supports
the central ideas of modern AMLs within a framework

I Promotes flexibility, extensibility, portability, and maintainability.

I Pyomo modeling objects are embedded within Python gives rich set of
supporting libraries.

I Pyomo can call solvers such as GLPK, Coin-OR, CPLEX and Gurobi to solve
linear, integer and mixed integer models

(IEOR@IITB) Pyomo 8 / 22

Pyomo

Pyomo

Installing Pyomo

I First install Python pip by typing: sudo apt-get install python-pip

I Install Pyomo by typing: sudo pip install pyomo

Note: To use Pyomo you need to install the solver separately.

Example
max 1000x1 + 2000x2 + 3000x3 (1)

s.t. :

x1 + 2x2 + 3x3 ≤ 10

x2 + 2x3 ≤ 5

x1, x2, x3 ≥ 0

(IEOR@IITB) Pyomo 9 / 22

Pyomo

Pyomo Code
from future import division
from pyomo.environ import *
from pyomo.opt import SolverFactory
model = AbstractModel()

Define Variable
model.x1 = Var(domain=NonNegativeReals)
model.x2 = Var(domain=NonNegativeReals)
model.x3 = Var(domain=NonNegativeReals)

(IEOR@IITB) Pyomo 10 / 22

Pyomo

Define the Objective function
def obj expression(model):

return 1000 * model.x1 + 2000 * model.x2 + 3000 * model.x3

model.OBJ = Objective(rule = obj expression, sense = maximize)

Define the constraints
def constraint01 rule(model):

return x1 + 2 * model.x2 + 3 * model.x3 ≤ 10
model.Constraint01 = Constraint(rule=constraint01 rule)

def constraint02 rule(model):
return model.x2 + 2 * model.x3 ≤ 5

model.Constraint02 = Constraint(rule=constraint02 rule)

(IEOR@IITB) Pyomo 11 / 22

Pyomo

Karnataka Engineering Company Problem

I The problem statement is given in KEC.pdf file.

I Data for solving this problem is given in kecModelData.dat file

Pyomo Code
from pyomo.environ import *
from pyomo.opt import SolverFactory
from pyomo.opt import SolverStatus, TerminationCondition
model = AbstractModel()

Declare Set
model.SupplyRegion = Set()
model.DemandRegion = Set()

(IEOR@IITB) Pyomo 12 / 22

Pyomo

Define Parameter
model.distances = Param(model.SupplyRegion, model.DemandRegion)
model.lowcapacity = Param(model.SupplyRegion)
model.highcapacity = Param(model.SupplyRegion)
model.costperkm = Param()
model.fixedcosts = Param(model.SupplyRegion)
model.demand = Param(model.DemandRegion)
model.productioncosts = Param(model.SupplyRegion)
model.lowcostperkm = Param()
model.highcostperkm = Param()
model.productMoved = Param()

(IEOR@IITB) Pyomo 13 / 22

Pyomo

Define Variable
model.open1 = Var(model.SupplyRegion, domain = Binary)
model.qtyship = Var(model.SupplyRegion, model.DemandRegion, domain =
NonNegativeIntegers, initialize = 0)
model.shipcosts = Var(model.SupplyRegion, model.DemandRegion, domain =
NonNegativeIntegers, initialize = 0)
model.y = Var(model.SupplyRegion, model.DemandRegion, domain = Binary)
model.z = Var(model.SupplyRegion, model.DemandRegion, domain = Binary)
model.v = Var(model.SupplyRegion, model.DemandRegion, domain = Binary)

(IEOR@IITB) Pyomo 14 / 22

Pyomo

Define Objective function
def obj expression(model):

return sum(model.fixedcosts[i] * model.open1[i] for i in model.SupplyRegion) +
sum(model.shipcosts[i,j] * model.distances[i,j] for i in model.SupplyRegion
for j in model.DemandRegion) + sum(model.productioncosts[i] *
model.qtyship[i,j] for i in model.SupplyRegion for j in model.DemandRegion)

model.OBJ = Objective(rule=obj expression, sense = minimize)

(IEOR@IITB) Pyomo 15 / 22

Pyomo

Define Constraints
def constraint01 rule(model, j):

return sum(model.qtyship[i,j] for i in model.SupplyRegion)== model.demand[j]
model.Constraint01 = Constraint(model.DemandRegion, rule=constraint01 rule)

def constraint02 rule(model, i):
return sum(model.qtyship[i,j] for j in model.DemandRegion) ≤
model.highcapacity[i] * model.open1[i]

model.Constraint02 = Constraint(model.SupplyRegion, rule=constraint02 rule)

def constraint03 rule(model, i):
return sum(model.qtyship[i,j] for j in model.DemandRegion) ≥
model.lowcapacity[i] * model.open1[i]

model.Constraint03 = Constraint(model.SupplyRegion, rule=constraint03 rule)

(IEOR@IITB) Pyomo 16 / 22

Pyomo

Define Constraints
def constraint04 rule(model, i, j):

return model.qtyship[i,j] ≤ model.productMoved + 40 * model.z[i,j]
model.Constraint04 = Constraint(model.SupplyRegion, model.DemandRegion,
rule=constraint04 rule)

def constraint05 rule(model, i, j):
return model.qtyship[i,j] ≥ model.productMoved - 40 * model.y[i,j]

model.Constraint05 = Constraint(model.SupplyRegion, model.DemandRegion,
rule=constraint05 rule)

def constraint06 rule(model, i, j):
return model.y[i,j] + model.z[i,j] == 1

model.Constraint06 = Constraint(model.SupplyRegion, model.DemandRegion,
rule=constraint06 rule)

(IEOR@IITB) Pyomo 17 / 22

Pyomo

Define Constraints
def constraint07 rule(model, i, j):

return model.shipcosts[i,j] ≥ model.highcostperkm * model.qtyship[i,j] - 1000 *
model.z[i,j]

model.Constraint07 = Constraint(model.SupplyRegion, model.DemandRegion,
rule=constraint07 rule)

def constraint08 rule(model, i, j):
return model.shipcosts[i,j] ≥ model.lowcostperkm * model.qtyship[i,j] - 1000 *
model.y[i,j]

model.Constraint08 = Constraint(model.SupplyRegion, model.DemandRegion,
rule=constraint08 rule)

(IEOR@IITB) Pyomo 18 / 22

Pyomo

Nonlinear Programming

I Pyomo makes use of the interface provided by the AMPL Solver Library to
provide efficient expression evaluation and automatic differentiation.

I Use of the AMPL Solver Library means that any AMPL-enabled solver should
be usable as a solver within the Pyomo framework.

General Nonlinear programming formulation:

min
x

f (x) (2)

s.t. c(x) = 0

dL ≤ d(x) ≤ dU

xL ≤ x ≤ xU

(IEOR@IITB) Pyomo 19 / 22

Pyomo

I Pyomo has been tested with local and global solvers that typically assume that
these functions are continuous and smooth, with continuous first (and possibly
second) derivatives.

Rosenbrock function

I It is a famous unconstrained nonlinear optimization problem.

min
x,y

f (x, y) = (1− x)2 + 100(y− x2)2 (3)

(IEOR@IITB) Pyomo 20 / 22

Pyomo

Pyomo Model

I first the necessary packages are imported, and then a model object is created.

from pyomo import *
model = AbstractModel()

Define Variable

I The model creates two variables x and y and initializes each of them to a value
of 1.5

model.x = Var(initialize = 1.5) model.y = Var(initialize = 1.5)

(IEOR@IITB) Pyomo 21 / 22

Pyomo

Define Objective function
def rosenbrock(model):

return (1.0-model.x)**2 + 100.0*(model.y - model.x**2)**2
model.obj = Objective(rule=rosenbrock, sense=minimize)

I Run the following to solve the problem.

pyomo –solver=ipopt –summary Rosenbrock.py

(IEOR@IITB) Pyomo 22 / 22

	Introduction
	Pyomo

