Modeling and solving mathematical optimization

problems with Python
SciPy India 2015

Industrial Engineering and Operations Research
Indian Institute of Technology Bombay

(IEOR@IITB) Pyomo

Outline

Introduction

Pyomo

(IEOR@IITB) Pyomo

What is Optimization?
Optimization is a problem of decision making in which we need to choose between
various alternatives under certain conditions.
Mathematical Modeling
» Modeling is a fundamental process in many aspects of scientific research,
engineering, and business.

> Modeling involves the formulation of a simplified representation of a system or

real-world object.
> Allow structured representation of knowledge about the original system.

> Optimization models are mathematical models that include functions that
represent goals or objectives for the system being modelled with given
condition.

(IEOR@IITB) Pyomo

Introduction

General form of a mathematical model

min or max f(xy, ..., x,) (Objective function)
subject to, glxr,.i;xy) >0 (functional constraints)
Xlyeoy Xy €S (set constraints)

X1, ..., X, are called decision variables

In another words, the goal is to find xy, ..., x,, such that

> They satisfy the constraints.
» If no such value exist for xi, ..., x,,, the problem is infeasible.

» They achieve min or max objective function value (may be unbounded)

(IEOR@IITB) Pyomo

Introduction

Deterministic
(Parameters are known)

Decision variables Decision variables
are continuous are integers
Linear programming models Nonlinear programming models
(constraints and objectives (constraints and/or objectives
are linear) are non-linear)

Figure 1 : Types of Deterministic Optimization Models

(IEOR@IITB) Pyomo

Introduction

Applications of optimization

>

Scheduling of Buses/trains

Transportation network design

Supply chain optimization

Optimum circuit design of PCB

Design optimization of various mechanical components
Process optimization in chemical industry

Designing of the sharing network in internet

Search engine optimization

Shop floor layout planning

Production planning and scheduling

Hospital management systems etc.

(IEOR@IITB) Pyomo

Introduction

Popular optimization solvers

» CPLEX
» Gurobi
» GLPK

» CLP, CBC, IPOPT (part of COIN-OR)

v

LINDO and Lingo etc.

Python interface for optimization

» Pyomo — used for LP models.

» PuLP — used for LP models.

(IEOR@IITB) Pyomo

Pyomo

> A Python-based modeling tool for optimization models.

> Goal is to provide a platform for expressing optimization models that supports
the central ideas of modern AMLs within a framework

» Promotes flexibility, extensibility, portability, and maintainability.

» Pyomo modeling objects are embedded within Python gives rich set of
supporting libraries.

» Pyomo can call solvers such as GLPK, Coin-OR, CPLEX and Gurobi to solve

linear, integer and mixed integer models

(IEOR@IITB) Pyomo

Pyomo
Installing Pyomo

» First install Python pip by typing: sudo apt-get install python-pip

» Install Pyomo by typing: sudo pip install pyomo
Note: To use Pyomo you need to install the solver separately.

Example
max 1000x; 4 2000x, + 3000x3 1

S.t.:
X1+ 2x 4+ 3x < 10
Xy 4+ 2x3 <5

X1,X2,X3 > 0

(IEOR@IITB) Pyomo

Pyomo

Pyomo Code

from __future__ import division

from pyomo.environ import *

from pyomo.opt import SolverFactory
model = AbstractModel()

Define Variable

model.x; = Var(domain=NonNegativeReals)
model.x, = Var(domain=NonNegativeReals)
model.x; = Var(domain=NonNegativeReals)

(IEOR@IITB) Pyomo 10/22

Pyomo

Define the Objective function

def obj_expression(model):
return 1000 * model.x; + 2000 * model.x, + 3000 * model.x3

model.OBJ = Objective(rule = obj_expression, sense = maximize)

Define the constraints
def constraintO1_rule(model):

return x; + 2 * model.x, + 3 * model.x3 < 10
model.Constraint01 = Constraint(rule=constraintO1_rule)

def constraint02_rule(model):
return model.x; + 2 * model.x; < 5
model.Constraint02 = Constraint(rule=constraint02_rule)

(IEOR@IITB) Pyomo

Karnataka Engineering Company Problem

> The problem statement is given in KEC.pdf file.

» Data for solving this problem is given in kecModelData.dat file

Pyomo Code

from pyomo.environ import *

from pyomo.opt import SolverFactory

from pyomo.opt import SolverStatus, TerminationCondition
model = AbstractModel()

Declare Set
model.SupplyRegion = Set()
model.DemandRegion = Set()

(IEOR@IITB) Pyomo

Pyomo

Define Parameter

model.distances = Param(model. SupplyRegion, model. DemandRegion)
model.lowcapacity = Param(model.SupplyRegion)
model.highcapacity = Param(model.SupplyRegion)
model.costperkm = Param()

model.fixedcosts = Param(model.SupplyRegion)
model.demand = Param(model.DemandRegion)
model.productioncosts = Param(model.SupplyRegion)
model.lowcostperkm = Param()

model.highcostperkm = Param()
model.productMoved = Param()

(IEOR@IITB) Pyomo

Pyomo

Define Variable

model.openl = Var(model.SupplyRegion, domain = Binary)

model.qtyship = Var(model.SupplyRegion, model. DemandRegion, domain =
NonNegativelntegers, initialize = 0)

model.shipcosts = Var(model.SupplyRegion, model. DemandRegion, domain =
NonNegativelntegers, initialize = 0)

model.y = Var(model.SupplyRegion, model. DemandRegion, domain = Binary)
model.z = Var(model SupplyRegion, model. DemandRegion, domain = Binary)
model.v = Var(model. SupplyRegion, model. DemandRegion, domain = Binary)

(IEOR@IITB) Pyomo

Pyomo

Define Objective function
def obj_expression(model):
return sum(model.fixedcosts[i] * model.openl[i] for i in model.SupplyRegion) +
sum(model.shipcosts[i,j] * model.distances[i,j] for i in model.SupplyRegion
for j in model.DemandRegion) + sum(model.productioncosts[i] *
model.qtyship[i,j] for i in model.SupplyRegion for j in model. DemandRegion)

model.OBJ = Objective(rule=obj_expression, sense = minimize)

(IEOR@IITB) Pyomo

Pyomo

Define Constraints
def constraintO1 _rule(model, j):
return sum(model.qtyship[i,j] for i in model. SupplyRegion)== model.demand|[j]

model.Constraint01 = Constraint(model. DemandRegion, rule=constraint0l1 _rule)

def constraint02 _rule(model, i):
return sum(model.qtyship[i,j] for j in model. DemandRegion) <
model.highcapacity[i] * model.openl[i]

model.Constraint02 = Constraint(model.SupplyRegion, rule=constraint02 _rule)

def constraint03 _rule(model, i):
return sum(model.qtyship[i,j] for j in model. DemandRegion) >
model.lowcapacity[i] * model.openl[i]

model.Constraint03 = Constraint(model.SupplyRegion, rule=constraint03 _rule)

(IEOR@IITB) Pyomo

Pyomo

Define Constraints
def constraintO4_rule(model, i, j):

return model.qtyship[i,j] < model.productMoved + 40 * model.z[i,j]
model.Constraint04 = Constraint(model.SupplyRegion, model. DemandRegion,

rule=constraint04 _rule)

def constraint05 _rule(model, i, j):
return model.qtyship[i,j] > model.productMoved - 40 * model.y[i,j]
model.Constraint05 = Constraint(model.SupplyRegion, model. DemandRegion,

rule=constraint05 _rule)

def constraint06_rule(model, i, j):
return model.y[i,j] + model.z[i,j] == 1
model.Constraint06 = Constraint(model.SupplyRegion, model. DemandRegion,

rule=constraint06 _rule)

(IEOR@IITB) Pyomo

Pyomo

Define Constraints
def constraint07 _rule(model, i, j):
return model.shipcosts[i,j] > model.highcostperkm * model.qtyship[i,j] - 1000 *

model.z[i,j]
model.Constraint07 = Constraint(model. SupplyRegion, model. DemandRegion,

rule=constraint07 _rule)
def constraintO8_rule(model, i, j):
return model.shipcosts[i,j] > model.lowcostperkm * model.qtyship[i,j] - 1000 *

model.y[i,j]
model.Constraint08 = Constraint(model.SupplyRegion, model. DemandRegion,

rule=constraint08_rule)

(IEOR@IITB) Pyomo

Nonlinear Programming

» Pyomo makes use of the interface provided by the AMPL Solver Library to
provide efficient expression evaluation and automatic differentiation.

> Use of the AMPL Solver Library means that any AMPL-enabled solver should

be usable as a solver within the Pyomo framework.

General Nonlinear programming formulation:

minjf(x) 2)
st c(x) =0
d“ <d(x) <d?

ngxSxU

(IEOR@IITB) Pyomo

Pyomo

» Pyomo has been tested with local and global solvers that typically assume that
these functions are continuous and smooth, with continuous first (and possibly
second) derivatives.

Rosenbrock function

» It is a famous unconstrained nonlinear optimization problem.

min f(x,y) = (I = x)* + 100(y — *)* 3)

(IEOR@IITB) Pyomo 20/22

Pyomo

Pyomo Model

> first the necessary packages are imported, and then a model object is created.

from pyomo import *
model = AbstractModel()

Define Variable

» The model creates two variables x and y and initializes each of them to a value
of 1.5

model.x = Var(initialize = 1.5) model.y = Var(initialize = 1.5)

(IEOR@IITB) Pyomo

Define Objective function

def rosenbrock(model):
return (1.0-model.x)**2 + 100.0*(model.y - model.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

> Run the following to solve the problem.

pyomo —solver=ipopt —summary Rosenbrock.py

(IEOR@IITB) Pyomo

	Introduction
	Pyomo

