
A Glimpse at Scipy

FOSSEE

June 2010

Abstract

This document shows a glimpse of the features of Scipy that will be
explored during this course.

1 Introduction

SciPy is open-source software for mathematics, science, and engineering.
SciPy (pronounced “Sigh Pie”) is a collection of mathematical algorithms

and convenience functions built on the Numpy extension for Python. It adds
significant power to the interactive Python session by exposing the user to high-
level commands and classes for the manipulation and visualization of data. With
SciPy, an interactive Python session becomes a data-processing and system-
prototyping environment rivaling sytems such as Matlab, IDL, Octave, R-Lab,
and Scilab. [1]

1.1 Sub-packages of Scipy

SciPy is organized into subpackages covering different scientific computing do-
mains. These are summarized in the table 1.

1.2 Use of Scipy in this course

Following is a partial list of tasks we shall perform using Scipy, in this course.

1. Plotting 1

2. Matrix Operations

• Inverse

• Determinant

3. Solving Equations

• System of Linear equations

1using pylab - see Appendix A

1

Table 1: Sub-packages available in Scipy
Subpackage Description
cluster Clustering algorithms
constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
io Input and Output
linalg Linear algebra
maxentropy Maximum entropy methods
ndimage N-dimensional image processing
odr Orthogonal distance regression
optimize Optimization and root-nding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions
weave C/C++ integration

• Polynomials

• Non-linear equations

4. Integration

• Quadrature

• ODEs

2 A Glimpse of Scipy functions

This section gives a brief overview of the tasks that are going to be performed
using Scipy, in future classes of this course.

2.1 Matrix Operations

Let A be the matrix

1 3 5
2 5 1
2 3 8


To input A matrix into python, we do the following in ipython2

In []: A = array ([[1 ,3 ,5] ,[2 ,5,1],[2,3,8]])

2ipython must be started with -pylab flag

2

2.1.1 Inverse

The inverse of a matrix A is the matrix B such that AB = I where I is the
identity matrix consisting of ones down the main diagonal. Usually B is denoted
B = A−1 . In SciPy, the matrix inverse of matrix A is obtained using

inv(A).

In []: inv(A)

Out []:

array ([[-1.48 , 0.36, 0.88] ,

[0.56, 0.08, -0.36],

[0.16, -0.12, 0.04]])

2.1.2 Determinant

The determinant of a square matrix A is denoted |A|. Suppose aij are the
elements of the matrix A and let Mij = |Aij | be the determinant of the matrix
left by removing the ith row and jth column from A. Then for any row i

|A| =
∑
j

(−1)
i+j

aijMij

This is a recursive way to define the determinant where the base case is
defined by accepting that the determinant of a 1× 1 matrix is the only matrix
element. In SciPy the determinant can be calculated with det . For example,
the determinant of

A =

1 3 5
2 5 1
2 3 8


is

|A| = 1

∣∣∣∣5 1
3 8

∣∣∣∣− 3

∣∣∣∣2 1
2 8

∣∣∣∣+ 5

∣∣∣∣2 5
2 3

∣∣∣∣
= 1(5 · 8− 3 · 1)− 3(2 · 8− 2 · 1) + 5(2 · 3− 2 · 5) = −25

In SciPy, this is computed as shown below

In []: A = array ([[1, 3, 5], [2, 5, 1], [2, 3, 8]])

In []: det(A)

Out []: -25.0

2.2 Solving Equations

2.2.1 Linear Equations

Solving linear systems of equations is straightforward using the scipy command
solve. This command expects an input matrix and a right-hand-side vector.

3

The solution vector is then computed. An option for entering a symmetrix
matrix is offered which can speed up the processing when applicable. As an
example, suppose it is desired to solve the following simultaneous equations:

x+ 3y + 5z = 10 (1)

2x+ 5y + z = 8 (2)

2x+ 3y + 8z = 3 (3)

We could find the solution vector using a matrix inverse:

 x
y
z

 =

 1 3 5
2 5 1
2 3 8

−1  10
8
3

 =
1

25

 −232
129
19

 =

 −9.28
5.16
0.76


However, it is better to use the solve command which can be faster and more

numerically stable. In this case it however gives the same answer.

In []: A = array ([[1, 3, 5], [2, 5, 1], [2, 3, 8]])

In []: b = array ([[10] , [8], [3]])

In []: dot(inv(A), b)

Out []:

array ([[-9.28] ,

[5.16] ,

[0.76]])

In []: solve(A,b)

Out []:

array ([[-9.28] ,

[5.16] ,

[0.76]])

2.2.2 Polynomials

Solving a polynomial is straightforward in scipy using the roots command. It
expects the coefficients of the polynomial in their decreasing order. For example,
let’s find the roots of x3− 2x2− 1

2x+ 1 are 2,
√

2 and −
√

2. This is easy to see.

x3 − 2x2 − 1

2
x+ 1 = 0

x2(x− 2)− 1

2
(x− 2) = 0

(x− 2)(x2 − 1

2
) = 0

(x− 2)(x− 1√
2

)(x+
1√
2

) = 0

4

We do it in scipy as shown below:

In []: coeff = array ([1, -2, -2, 4])

In []: roots(coeff)

2.2.3 Non-linear Equations

To find a root of a set of non-linear equations, the command fsolve is needed.
For example, the following example finds the roots of the single-variable tran-
scendental equation

x+ 2 cos (x) = 0,

and the set of non-linear equations

x0 cos (x1) = 4, (4)

x0x1 − x1 = 5 (5)

The results are x = −1.0299 and x0 = 6.5041, x1 = 0.9084 .

In []: def func(x):

...: return x + 2*cos(x)

In []: def func2(x):

...: out = [x[0]* cos(x[1]) - 4]

...: out.append(x[1]*x[0] - x[1] - 5)

...: return out

In []: from scipy.optimize import fsolve

In []: x0 = fsolve(func , 0.3)

In []: print x0

-1.02986652932

In []: x02 = fsolve(func2 , [1, 1])

In []: print x02

[6.50409711 0.90841421]

2.3 Integration

2.3.1 Quadrature

The function quad is provided to integrate a function of one variable between
two points. The points can be ±∞ (± inf) to indicate infinite limits. For
example, suppose you wish to integrate the expression esin(x) in the interval

[0, 2π], i.e.
∫ 2π

0
esin(x)dx, it could be computed using

5

In []: def func(x):

...: return exp(sin(x))

In []: from scipy.integrate import quad

In []: result = quad(func , 0, 2*pi)

In []: print result

(7.9549265210128457 , 4.0521874164521979e-10)

2.3.2 ODE

We wish to solve an (a system of) Ordinary Differential Equation. For this
purpose, we shall use odeint. As an illustration, let us solve the ODE

dy

dt
= ky(L− y) (6)

L = 25000, k = 0.00003, y(0) = 250

We solve it in scipy as shown below.

In []: from scipy.integrate import odeint

In []: def f(y, t):

...: k, L = 0.00003 , 25000

...: return k*y*(L-y)

...:

In []: t = linspace(0, 12, 60)

In []: y0 = 250

In []: y = odeint(f, y0 , t)

Note: To solve a system of ODEs, we need to change the function to return
the right hand side of all the equations and the system and the pass the required
number of initial conditions to the odeint function.

A Plotting using Pylab

The following piece of code, produces the plot in Figure 1 using pylab[2] in
ipython3[3]

In []: x = linspace(0, 2*pi , 50)

In []: plot(x, sin(x))

In []: title(’Sine Curve between 0 and π’)

In []: legend ([’sin(x)’])

3start ipython with -pylab flag

6

Figure 1: Sine curve

References

[1] Eric Jones and Travis Oliphant and Pearu Peterson and others, SciPy: Open
source scientific tools for Python, 2001 – , http://www.scipy.org/

[2] John D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput-
ing in Science and Engineering, vol. 9, no. 3, pp. 90-95, May/June 2007,
doi:10.1109/MCSE.2007.55

[3] Fernando Perez, Brian E. Granger, “IPython: A System for Interactive Sci-
entific Computing,” Computing in Science and Engineering, vol. 9, no. 3,
pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53.

7

